Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1371107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707591

RESUMO

When learning to use a brain-machine interface (BMI), the brain modulates neuronal activity patterns, exploring and exploiting the state space defined by their neural manifold. Neurons directly involved in BMI control (i.e., direct neurons) can display marked changes in their firing patterns during BMI learning. However, the extent of firing pattern changes in neurons not directly involved in BMI control (i.e., indirect neurons) remains unclear. To clarify this issue, we localized direct and indirect neurons to separate hemispheres in a task designed to bilaterally engage these hemispheres while animals learned to control the position of a platform with their neural signals. Animals that learned to control the platform and improve their performance in the task shifted from a global strategy, where both direct and indirect neurons modified their firing patterns, to a local strategy, where only direct neurons modified their firing rate, as animals became expert in the task. Animals that did not learn the BMI task did not shift from utilizing a global to a local strategy. These results provide important insights into what differentiates successful and unsuccessful BMI learning and the computational mechanisms adopted by the neurons.

2.
Cell Rep ; 42(4): 112347, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37027302

RESUMO

The cortex has a disputed role in monitoring postural equilibrium and intervening in cases of major postural disturbances. Here, we investigate the patterns of neural activity in the cortex that underlie neural dynamics during unexpected perturbations. In both the primary sensory (S1) and motor (M1) cortices of the rat, unique neuronal classes differentially covary their responses to distinguish different characteristics of applied postural perturbations; however, there is substantial information gain in M1, demonstrating a role for higher-order computations in motor control. A dynamical systems model of M1 activity and forces generated by the limbs reveals that these neuronal classes contribute to a low-dimensional manifold comprised of separate subspaces enabled by congruent and incongruent neural firing patterns that define different computations depending on the postural responses. These results inform how the cortex engages in postural control, directing work aiming to understand postural instability after neurological disease.


Assuntos
Postura , Córtex Sensório-Motor , Animais , Ratos , Postura/fisiologia , Membro Posterior , Equilíbrio Postural/fisiologia , Neurônios
3.
Exp Neurol ; 364: 114394, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37001630

RESUMO

Postural control is critical for locomotion, allowing for gait changes, obstacle avoidance and navigation of rough terrain. A major problem after spinal cord injury (SCI) is regaining the control of balance to prevent falls and further injury. While the circuits for locomotor pattern generation reside in the spinal cord, postural control consists of multiple, complex networks that interact at the spinal, brainstem and cortical levels. After complete SCI, cortical reorganization establishes novel control of trunk musculature that is required for weight-supported stepping. In this study, we examined the impact of exercise therapy on cortical reorganization in the more clinically relevant models of both moderate and severe midthoracic contusion injury in the rat. Results demonstrate that both spontaneous recovery and therapy induced recovery of weight-supported stepping utilize cortical reorganization. Moreover, exercise therapy further improves outcome by enhancing cortical control of lower thoracic muscles enabling improvements in interlimb coordination associated with improved balance that increases weight-supported stepping. The outcome of this study suggest that cortical control of posture is key to functional improvement in locomotion. This information can be used to improve the timing and type of therapy after SCI by considering changes along the entire neural axis.


Assuntos
Contusões , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Locomoção/fisiologia , Terapia por Exercício/métodos , Marcha/fisiologia , Traumatismos da Medula Espinal/terapia , Músculo Esquelético , Recuperação de Função Fisiológica
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5860-5863, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892452

RESUMO

Calcium imaging has great potential to be applied to online brain-machine interfaces (BMIs). As opposed to two-photon imaging settings, a one-photon microendoscopic imaging device can be chronically implanted and is subject to little motion artifacts. Traditionally, one-photon microendoscopic calcium imaging data are processed using the constrained nonnegative matrix factorization (CNMFe) algorithm, but this batched processing algorithm cannot be applied in real-time. An online analysis of calcium imaging data algorithm (or OnACIDe) has been proposed, but OnACIDe updates the neural components by repeatedly performing neuron identification frame-by-frame, which may decelerate the update speed if applying to online BMIs. For BMI applications, the ability to track a stable population of neurons in real-time has a higher priority over accurately identifying all the neurons in the field of view. By leveraging the fact that 1) microendoscopic recordings are rather stable with little motion artifacts and 2) the number of neurons identified in a short training period is sufficient for potential online BMI tasks such as cursor movements, we proposed the short-training CNMFe algorithm (stCNMFe) that skips motion correction and neuron identification processes to enable a more efficient BMI training program in a one-photon microendoscopic setting.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Artefatos , Cálcio , Fótons
5.
J Neurophysiol ; 126(5): 1555-1567, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34379540

RESUMO

Supraspinal signals play a significant role in compensatory responses to postural perturbations. Although the cortex is not necessary for basic postural tasks in intact animals, its role in responding to unexpected postural perturbations after spinal cord injury (SCI) has not been studied. To better understand how SCI impacts cortical encoding of postural perturbations, the activity of single neurons in the hindlimb sensorimotor cortex (HLSMC) was recorded in the rat during unexpected tilts before and after a complete midthoracic spinal transection. In a subset of animals, limb ground reaction forces were also collected. HLSMC activity was strongly modulated in response to different tilt profiles. As the velocity of the tilt increased, more information was conveyed by the HLSMC neurons about the perturbation due to increases in both the number of recruited neurons and the magnitude of their responses. SCI led to attenuated and delayed hindlimb ground reaction forces. However, HLSMC neurons remained responsive to tilts after injury but with increased latencies and decreased tuning to slower tilts. Information conveyed by cortical neurons about the tilts was therefore reduced after SCI, requiring more cells to convey the same amount of information as before the transection. Given that reorganization of the hindlimb sensorimotor cortex in response to therapy after complete midthoracic SCI is necessary for behavioral recovery, this sustained encoding of information after SCI could be a substrate for the reorganization that uses sensory information from above the lesion to control trunk muscles that permit weight-supported stepping and postural control.NEW & NOTEWORTHY The role of cortical circuits in the encoding of posture and balance is of interest for developing therapies for spinal cord injury. This work demonstrated that unexpected postural perturbations are encoded in the hindlimb sensorimotor cortex even in the absence of hindlimb sensory feedback. In fact, the hindlimb sensorimotor cortex continues to encode for postural perturbations after complete spinal transection.


Assuntos
Membro Posterior/fisiopatologia , Neurônios/fisiologia , Equilíbrio Postural/fisiologia , Postura/fisiologia , Córtex Sensório-Motor/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos/fisiologia , Ratos , Ratos Long-Evans
6.
Cereb Cortex ; 31(11): 5165-5187, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34165153

RESUMO

Sensorimotor integration in the trunk system is poorly understood despite its importance for functional recovery after neurological injury. To address this, a series of mapping studies were performed in the rat. First, the receptive fields (RFs) of cells recorded from thoracic dorsal root ganglia were identified. Second, the RFs of cells recorded from trunk primary sensory cortex (S1) were used to assess the extent and internal organization of trunk S1. Finally, the trunk motor cortex (M1) was mapped using intracortical microstimulation to assess coactivation of trunk muscles with hindlimb and forelimb muscles, and integration with S1. Projections from trunk S1 to trunk M1 were not anatomically organized, with relatively weak sensorimotor integration between trunk S1 and M1 compared to extensive integration between hindlimb S1/M1 and trunk M1. Assessment of response latency and anatomical tracing suggest that trunk M1 is abundantly guided by hindlimb somatosensory information that is derived primarily from the thalamus. Finally, neural recordings from awake animals during unexpected postural perturbations support sensorimotor integration between hindlimb S1 and trunk M1, providing insight into the role of the trunk system in postural control that is useful when studying recovery after injury.


Assuntos
Córtex Motor , Animais , Membro Posterior/fisiologia , Córtex Motor/fisiologia , Ratos , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Vigília
7.
Cell Rep ; 35(11): 109239, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133921

RESUMO

Microendoscopic calcium imaging with one-photon miniature microscopes enables unprecedented readout of neural circuit dynamics during active behavior in rodents. In this study, we describe successful application of this technology in the rhesus macaque, demonstrating plug-and-play, head-mounted recordings of cellular-resolution calcium dynamics from large populations of neurons simultaneously in bilateral dorsal premotor cortices during performance of a naturalistic motor reach task. Imaging is stable over several months, allowing us to longitudinally track individual neurons and monitor their relationship to motor behavior over time. We observe neuronal calcium dynamics selective for reach direction, which we could use to decode the animal's trial-by-trial motor behavior. This work establishes head-mounted microendoscopic calcium imaging in macaques as a powerful approach for studying the neural circuit mechanisms underlying complex and clinically relevant behaviors, and it promises to greatly advance our understanding of human brain function, as well as its dysfunction in neurological disease.


Assuntos
Comportamento Animal/fisiologia , Cálcio/metabolismo , Endoscopia , Imageamento Tridimensional , Córtex Motor/diagnóstico por imagem , Animais , Cabeça , Macaca mulatta , Masculino , Córtex Motor/cirurgia , Neurônios/fisiologia , Fatores de Tempo
8.
Eur J Pain ; 25(4): 801-816, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33296535

RESUMO

BACKGROUND: The rat mid-thoracic contusion model has been used to study at-level tactile allodynia, a common type of pain that develops after spinal cord injury (SCI). An important advantage of this model is that not all animals develop hypersensitivity. Therefore, it can be used to examine mechanisms that are strictly related to the development of pain-like behaviour separately from mechanisms related to the injury itself. However, how to separate animals that develop hypersensitivity from those that do not is unclear. METHODS: The aims of the current study were to identify where hypersensitivity and spasticity develop and use this information to identify metrics to separate animals that develop hypersensitivity from those that do not to study differences in their behaviour. To accomplish these aims, a grid was used to localize hypersensitivity on the dorsal trunk relative to thoracic dermatomes and supraspinal responses to tactile stimulation were tallied. These supraspinal responses were used to develop a hypersensitivity score to separate animals that develop hypersensitivity, or pain-like response to nonpainful stimuli. RESULTS: Similar to humans, the development of hypersensitivity could occur with the development of spasticity or hyperreflexia. Moreover, the time course and prevalence of hypersensitivity phenotypes (at-, above-, or below level) produced by this model were similar to that observed in humans with SCI. CONCLUSION: However, the amount of spared spinal matter in the cord did not explain the development of hypersensitivity, as previously reported. This approach can be used to study the mechanisms underlying the development of hypersensitivity separately from mechanisms related to injury alone.


Assuntos
Contusões , Traumatismos da Medula Espinal , Animais , Contusões/complicações , Modelos Animais de Doenças , Hiperalgesia/etiologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/complicações
9.
CNS Neurosci Ther ; 25(8): 884-893, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30941924

RESUMO

AIM: The activation of the TNFR2 receptor is beneficial in several pathologies of the central nervous system, and this study examines whether it can ameliorate the recovery process following spinal cord injury. METHODS: EHD2-sc-mTNFR2 , an agonist specific for TNFR2, was used to treat neurons exposed to high levels of glutamate in vitro. In vivo, it was infused directly to the spinal cord via osmotic pumps immediately after a contusion to the cord at the T9 level. Locomotion behavior was assessed for 6 weeks, and the tissue was analyzed (lesion size, RNA and protein expression, cell death) after injury. Somatosensory evoked potentials were also measured in response to hindlimb stimulation. RESULTS: The activation of TNFR2 protected neurons from glutamate-mediated excitotoxicity through the activation of phosphoinositide-3 kinase gamma in vitro and improved the locomotion of animals following spinal cord injury. The extent of the injury was not affected by infusing EHD2-sc-mTNFR2 , but higher levels of neurofilament H and 2', 3'-cyclic-nucleotide 3'-phosphodiesterase were observed 6 weeks after the injury. Finally, the activation of TNFR2 after injury increased the neural response recorded in the cortex following hindlimb stimulation. CONCLUSION: The activation of TNFR2 in the spinal cord following contusive injury leads to enhanced locomotion and better cortical responses to hindlimb stimulation.


Assuntos
Contusões/tratamento farmacológico , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Células Cultivadas , Classe Ib de Fosfatidilinositol 3-Quinase/fisiologia , Citocinas/análise , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Tipo II do Fator de Necrose Tumoral/fisiologia , Medula Espinal/efeitos dos fármacos , Traumatismos da Medula Espinal/imunologia
10.
Neurobiol Dis ; 129: 169-181, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30798003

RESUMO

Despite decades of research, our understanding of epilepsy, including how seizures are generated and propagate, is incomplete. However, there is growing recognition that epilepsy is more than just the occurrence of seizures, with patients often experiencing comorbid deficits in cognition that are poorly understood. In addition, the available therapies for treatment of epilepsy, from pharmaceutical treatment to surgical resection and seizure prevention devices, often exacerbate deficits in cognitive function. In this review, we discuss the hypothesis that seizure generation and cognitive deficits have a similar pathological source characterized by, but not limited to, deficits in theta oscillations and their influence on interneurons. We present a new framework that describes oscillatory states in epilepsy as alternating between hyper- and hypo-synchrony rather than solely the spontaneous transition to hyper-excitability characterized by the seizures. This framework suggests that as neural oscillations, specifically in the theta range, vary their tempo from a slowed almost adagio tempo during interictal periods to faster, more rhythmic allegretto tempo preictally, they impact the function of interneurons, modulating their ability to control seizures and their role in cognitive processing. This slow wave oscillatory framework may help explain why current therapies that work to reduce hyper-excitability do not completely eliminate seizures and often lead to exacerbated cognitive deficits.


Assuntos
Cognição/fisiologia , Epilepsia/fisiopatologia , Interneurônios/fisiologia , Ritmo Teta/fisiologia , Animais , Humanos
11.
Neuroimage Clin ; 20: 398-406, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30128278

RESUMO

Background: Electrode contact locations are important when planning tailored brain surgeries to identify pathological tissue targeted for resection and conversely avoid eloquent tissue. Current methods employ trained experts to use neuroimaging scans that are manually co-registered and localize contacts within ~2 mm. Yet, the state of the art is limited by either the expertise needed for each type of intracranial electrode or the inter-modality co-registration which increases error, reducing accuracy. Patients often have a variety of strips, grids and depths implanted; therefore, it is cumbersome and time-consuming to apply separate localization methods for each type of electrode, requiring expertise across different approaches. New method: To overcome these limitations, a computational method was developed by separately registering an implant magnetic resonance image (MRI) and implant computed tomography image (CT) to the pre-implant MRI, then calculating an iterative closest point transformation using the contact locations extracted from the signal voids as ground truth. Results: The implant MRI is robustly co-registered to the pre-implant MRI with a boundary-based registration algorithm. By extracting and utilizing 'signal voids' (the metal induced artifacts from the implant MRI) as electrode fiducials, the novel method is an all-in-one approach for all types of intracranial electrodes while eliminating inter-modality co-registration errors. Comparison with existing methods: The distance between each electrode centroid and the brain's surface was measured, for the proposed method as well as the state of the art method using two available software packages, SPM 12 and FSL 4.1. The method presented here achieves the smallest distances to the brain's surface for all strip and grid type electrodes, i.e. contacts designed to rest directly on the brain surface. Conclusion: We use one of the largest reported sample sizes in localization studies to validate this novel method for localizing different kinds of intracranial electrodes including grids, strips and depth electrodes.


Assuntos
Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Eletrodos Implantados , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletrodos Implantados/normas , Eletroencefalografia/instrumentação , Eletroencefalografia/normas , Feminino , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/normas , Adulto Jovem
12.
J Neurosci Methods ; 306: 103-114, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859878

RESUMO

BACKGROUND: Most brain machine interfaces (BMI) focus on upper body function in non-injured animals, not addressing the lower limb functional needs of those with paraplegia. A need exists for a novel BMI task that engages the lower body and takes advantage of well-established rodent spinal cord injury (SCI) models to study methods to improve BMI performance. NEW METHOD: A tilt BMI task was designed that randomly applies different types of tilts to a platform, decodes the tilt type applied and rights the platform if the decoder correctly classifies the tilt type. The task was tested on female rats and is relatively natural such that it does not require the animal to learn a new skill. It is self-rewarding such that there is no need for additional rewards, eliminating food or water restriction, which can be especially hard on spinalized rats. Finally, task difficulty can be adjusted by making the tilt parameters. RESULTS: This novel BMI task bilaterally engages the cortex without visual feedback regarding limb position in space and animals learn to improve their performance both pre and post-SCI.Comparison with Existing Methods: Most BMI tasks primarily engage one hemisphere, are upper-body, rely heavily on visual feedback, do not perform investigations in animal models of SCI, and require nonnaturalistic extrinsic motivation such as water rewarding for performance improvement. Our task addresses these gaps. CONCLUSIONS: The BMI paradigm presented here will enable researchers to investigate the interaction of plasticity after SCI and plasticity during BMI training on performance.


Assuntos
Interfaces Cérebro-Computador , Neurônios/fisiologia , Paraplegia/fisiopatologia , Desempenho Psicomotor/fisiologia , Córtex Sensório-Motor/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Comportamento Animal , Modelos Animais de Doenças , Desenho de Equipamento , Feminino , Aprendizagem/fisiologia , Masculino , Paraplegia/reabilitação , Ratos Long-Evans , Traumatismos da Medula Espinal/reabilitação
13.
Exp Neurol ; 304: 132-142, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29526741

RESUMO

Severe spinal cord injury (SCI) damages descending motor and serotonin (5-HT) fiber projections leading to paralysis and serotonin depletion. 5-HT receptors (5-HTRs) subsequently upregulate following 5-HT fiber degeneration, and dendritic density decreases indicative of atrophy. 5-HT pharmacotherapy or exercise can improve locomotor behavior after SCI. One might expect that 5-HT pharmacotherapy acts on upregulated spinal 5-HTRs to enhance function, and that exercise alone can influence dendritic atrophy. In the current study, we assessed locomotor recovery and spinal proteins influenced by SCI and therapy. 5-HT, 5-HT2AR, 5-HT1AR, and dendritic densities were quantified both early (1 week) and late (9 weeks) after SCI, and also following therapeutic interventions (5-HT pharmacotherapy, bike therapy, or a combination). Interestingly, chronic 5-HT pharmacotherapy largely normalized spinal 5-HTR upregulation following injury. Improvement in locomotor behavior was not correlated to 5-HTR density. These results support the hypothesis that chronic 5-HT pharmacotherapy can mediate recovery following SCI, despite acting on largely normal spinal 5-HTR levels. We next assessed spinal dendritic plasticity and its potential role in locomotor recovery. Single therapies did not normalize the loss of dendritic density after SCI. Groups displaying significantly atrophied dendritic processes were rarely able to achieve weight supported open-field locomotion. Only a combination of 5-HT pharmacotherapy and bike therapy enabled significant open-field weigh-supported stepping, mediated in part by restoring spinal dendritic density. These results support the use of combined therapies to synergistically impact multiple markers of spinal plasticity and improve motor recovery.


Assuntos
Plasticidade Neuronal/fisiologia , Quipazina/farmacologia , Recuperação de Função Fisiológica/fisiologia , Agonistas do Receptor de Serotonina/farmacologia , Traumatismos da Medula Espinal/fisiopatologia , Envelhecimento , Animais , Feminino , Plasticidade Neuronal/efeitos dos fármacos , Condicionamento Físico Animal/métodos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiopatologia
14.
Epilepsia ; 59(3): 636-649, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29442363

RESUMO

OBJECTIVE: To gain understanding of the neuronal mechanisms underlying regional seizure spread, the impact of regional synchrony between seizure focus and downstream networks on neuronal activity during the transition to seizure in those downstream networks was assessed. METHODS: Seven patients undergoing diagnostic intracranial electroencephalographic studies for surgical resection of epileptogenic regions were implanted with subdural clinical electrodes into the cortex (site of seizure initiation) and mesial temporal lobe (MTL) structures (downstream) as well as microwires into MTL. Neural activity was recorded (24/7) in parallel with the clinical intracranial electroencephalogram recordings for the duration of the patient's diagnostic stay. Changes in (1) regional synchrony (ie, coherence) between the presumptive neocortical seizure focus and MTL, (2) local synchrony between MTL neurons and their local field potential, and (3) neuronal firing rates within MTL in the time leading up to seizure were examined to study the mechanisms underlying seizure spread. RESULTS: In seizures of neocortical origin, an increase in regional synchrony preceded the spread of seizures into MTL (predominantly hippocampal). Within frequencies similar to those of regional synchrony, MTL networks showed an increase in unit-field coherence and a decrease in neuronal firing rate, specifically for inhibitory interneuron populations but not pyramidal cell populations. SIGNIFICANCE: These results suggest a mechanism of spreading seizures whereby the seizure focus first synchronizes local field potentials in downstream networks to the seizure activity. This change in local field coherence modifies the activity of interneuron populations in these downstream networks, which leads to the attenuation of interneuronal firing rate, effectively shutting down local interneuron populations prior to the spread of seizure. Therefore, regional synchrony may influence the failure of downstream interneurons to prevent the spread of the seizures during generalization.


Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Neocórtex/fisiopatologia , Rede Nervosa/fisiopatologia , Neurônios/fisiologia , Convulsões/fisiopatologia , Adolescente , Eletroencefalografia/métodos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neocórtex/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Convulsões/diagnóstico por imagem , Adulto Jovem
15.
J Neurosci ; 37(41): 10012-10021, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28899918

RESUMO

Adaptation of neural responses due to the history of sensory input has been observed across all sensory modalities. However, the computational role of adaptation is not fully understood, especially when one considers neural coding problems in which adaptation increases the ambiguity of the neural responses to simple stimuli. To address this, we quantified the impact of adaptation on the information conveyed by thalamic neurons about paired whisker stimuli in male rat. At the single neuron level, although paired-pulse adaptation reduces the information about the present stimulus, the information per spike increases. Moreover, the adapted response can convey significant amounts of information about whether, when and where a previous stimulus occurred. At the population level, ambiguity of the adapted responses about the present stimulus can be compensated for by large numbers of neurons. Therefore, paired-pulse adaptation does not reduce the discriminability of simple stimuli. It provides information about the spatiotemporal context of stimulus history.SIGNIFICANCE STATEMENT The present work provides a computational framework that demonstrates how adaptation allows neurons to encode spatiotemporal dynamics of stimulus history.


Assuntos
Adaptação Fisiológica/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Animais , Estimulação Elétrica , Masculino , Ratos , Ratos Wistar , Percepção Espacial/fisiologia , Tálamo/citologia , Vibrissas/inervação , Vibrissas/fisiologia
16.
Elife ; 62017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28661400

RESUMO

After paralyzing spinal cord injury the adult nervous system has little ability to 'heal' spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury.


Assuntos
Membro Posterior/fisiologia , Córtex Motor/fisiologia , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Animais , Axônios/fisiologia , Locomoção , Ratos
17.
Front Neurosci ; 11: 715, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311792

RESUMO

Single neuron and local field potential signals recorded in the primary motor cortex have been repeatedly demonstrated as viable control signals for multi-degree-of-freedom actuators. Although the primary source of these signals has been fore/upper limb motor regions, recent evidence suggests that neural adaptation underlying neuroprosthetic control is generalizable across cortex, including hindlimb sensorimotor cortex. Here, adult rats underwent a longitudinal study that included a hindlimb pedal press task in response to cues for specific durations, followed by brain machine interface (BMI) tasks in healthy rats, after rats received a complete spinal transection and after the BMI signal controls epidural stimulation (BMI-FES). Over the course of the transition from learned behavior to BMI task, fewer neurons were responsive after the cue, the proportion of neurons selective for press duration increased and these neurons carried more information. After a complete, mid-thoracic spinal lesion that completely severed both ascending and descending connections to the lower limbs, there was a reduction in task-responsive neurons followed by a reacquisition of task selectivity in recorded populations. This occurred due to a change in pattern of neuronal responses not simple changes in firing rate. Finally, during BMI-FES, additional information about the intended press duration was produced. This information was not dependent on the stimulation, which was the same for short and long duration presses during the early phase of stimulation, but instead was likely due to sensory feedback to sensorimotor cortex in response to movement along the trunk during the restored pedal press. This post-cue signal could be used as an error signal in a continuous decoder providing information about the position of the limb to optimally control a neuroprosthetic device.

18.
Exp Neurol ; 283(Pt A): 341-52, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27353968

RESUMO

Multiple studies have observed heterogeneous neuronal firing patterns as a local network transitions to spontaneous seizures. We demonstrated that separately examining interneurons and pyramidal cells during this transition in a rat model of temporal lobe epilepsy elucidates some of this heterogeneity. Recently, it was demonstrated that classifying cells into specific theta-related subtypes further clarified the heterogeneity. Moreover, changes in neuronal synchrony with the local field potential were identified and determined to be specific to interneurons during the transition to seizures. To extend our understanding of the chronic changes in epileptic networks, we examined field potentials and single neuron activity in the CA3 hippocampus of pilocarpine-treated rats during interictal periods and compared these to neuronal activity in healthy controls and during preictal periods. Neurons were classified into theta-subtypes based on changes in firing patterns during theta periods. As previously reported, we find a high probability of theta oscillations before seizure onset and a selective increase in theta-on interneuron firing rate immediately preceding seizure onset. However, we also find overall slower theta rhythm and a general decrease in subtype-specific firing during interictal periods compared to that in control animals. The decrease in subtype specific interneuron activity is accompanied by increases in synchrony. Exceptionally, theta-on interneurons, that selectively increase their firing rate at seizure onset, maintain similar firing rates and synchrony as controls during interictal period. These data suggest that increased synchrony during interictal periods may compensate for low firing rates creating instability during theta that is prone to seizure initiation via a transition to hyper-synchronous activation of theta-on interneurons.


Assuntos
Região CA3 Hipocampal/patologia , Região CA3 Hipocampal/fisiopatologia , Epilepsia/patologia , Interneurônios/fisiologia , Ritmo Teta/fisiologia , Potenciais de Ação/fisiologia , Animais , Modelos Animais de Doenças , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Masculino , Movimento/fisiologia , Agonistas Muscarínicos/toxicidade , Pilocarpina/toxicidade , Ratos , Ratos Long-Evans , Estatísticas não Paramétricas , Ritmo Teta/efeitos dos fármacos
19.
Exp Neurol ; 279: 1-12, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26826448

RESUMO

Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury.


Assuntos
Córtex Motor/patologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Animais , Ciclismo , Vias Eferentes/patologia , Estimulação Elétrica , Terapia por Exercício , Feminino , Membro Posterior/inervação , Membro Posterior/fisiopatologia , Locomoção , Microeletrodos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Serotoninérgicos/uso terapêutico , Córtex Somatossensorial/patologia , Medula Espinal/patologia , Traumatismos da Medula Espinal/tratamento farmacológico
20.
Neurorehabil Neural Repair ; 30(5): 479-89, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26338432

RESUMO

BACKGROUND: In rat models of spinal cord injury, at least 3 different strategies can be used to promote long-term cortical reorganization: (1) active exercise above the level of the lesion; (2) passive exercise below the level of the lesion; and (3) serotonergic pharmacotherapy. Whether and how these potential therapeutic strategies-and their underlying mechanisms of action-interact remains unknown. Methods In spinally transected adult rats, we compared the effects of active exercise above the level of the lesion (treadmill), passive exercise below the level of the lesion (bike), serotonergic pharmacotherapy (quipazine), and combinations of the above therapies (bike+quipazine, treadmill+quipazine, bike+treadmill+quipazine) on long-term cortical reorganization (9 weeks after the spinal transection). Cortical reorganization was measured as the percentage of cells recorded in the deafferented hindlimb cortex that responded to tactile stimulation of the contralateral forelimb. Results Bike and quipazine are "competing" therapies for cortical reorganization, in the sense that quipazine limits the cortical reorganization induced by bike, whereas treadmill and quipazine are "collaborative" therapies, in the sense that the reorganization induced by quipazine combined with treadmill is greater than the reorganization induced by either quipazine or treadmill. CONCLUSIONS: These results uncover the interactive effects between active/passive exercise and serotonergic pharmacotherapy on cortical reorganization after spinal cord injury, emphasizing the importance of understanding the effects of therapeutic strategies in spinal cord injury (and in other forms of deafferentation) from an integrated system-level approach.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Terapia por Exercício/métodos , Quipazina/uso terapêutico , Agonistas do Receptor de Serotonina/uso terapêutico , Traumatismos da Medula Espinal , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Córtex Cerebral/patologia , Modelos Animais de Doenças , Teste de Esforço , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/reabilitação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...